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ABSTRACT
We formulate three generalized Bayesian models for analyzing interrater and in-
trarater reliability in the presence of multilevel data. Stan implementations of these
models provide new estimates of interrater and intrarater reliability. We also derive
formulas for calculating marginal correlations under each of the three models. Com-
parisons of the kappa estimates and marginal correlations across the different models
are presented from two real-world datasets. Simulations demonstrate properties of
the different measures of agreement under different model assumptions.

KEYWORDS
Reliability; Bayesian; Hierarchical; Nested; Stan

1. Introduction

It is often important to report on the inconsistent classification of the ratings from
different raters (interrater) as well as the inconsistency of the ratings of a single rater’s
repeated ratings (intrarater). Although often used interchangeably, the primary dis-
tinction between reliability and agreement is that agreement is defined as the degree
to which classifications are identical, whereas reliability focuses on the extent of vari-
ability and error inherent in a measurement [7]. Interrater reliability can be defined
as the extent to which two or more raters agree in classifying a common observation.
It is a helpful measure in assessing the consistency of the implementation of a rating
system [12]. Intrarater reliability refers to the consistency of one rater’s classification
over multiple time points and is best determined when multiple trials are adminis-
tered over a short period of time [15]. Intrarater reliability is helping in verifying the
reproducibility of clinical measurements [9].

Many articles have discussed different measures of association for assessing inter-
rater and intrarater reliability, and are mostly dependent on the type of outcome [5].
Commonly used measures for the case of binary outcomes include Cohen’s Kappa
statistic with a corrected standard error and some of its variants [3, 4, 6], whereas
the intraclass correlation coefficient [1] is generally restricted to continuous outcomes.
Generalized estimating equations (GEE) are also used for modelling outcomes where
Kappa estimates are calculated as a function of the GEE parameters [20]. [8] also
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proposed a weighted interrater Kappa calculation based on a GEE approach for cat-
egorical data. All of these models utilize a frequentist approach and only estimate
interrater reliability and intrarater reliability separately but not jointly.

Joint estimation of interrater and intrarater reliability addresses several key issues
inherent in the separate estimation approaches commonly found in the literature. First,
by jointly modeling these two types of reliability, we can more accurately capture the
interdependencies between the consistency of different raters and the repeatability of
the same rater over time. This is particularly important in studies where the same
subjects are assessed multiple times by the same raters, as the correlation between
assessments can significantly influence the overall reliability of the measurements.

Moreover, joint modeling allows for the simultaneous estimation of both types of re-
liability, providing a more comprehensive understanding of the measurement process.
This is crucial for ensuring the validity of conclusions drawn from the data, espe-
cially in clinical settings where decision-making depends heavily on the precision and
repeatability of diagnostic assessments. By estimating these reliabilities together, we
can also better account for variability between subjects and across time points, lead-
ing to more robust estimates of measurement error. Separately estimating inter- and
intra-rater reliability ignores the dependencies in the data, whereas joint estimation
may provide more accurate reliability estimates, better statistical efficiency, and less
bias.

In this paper, we compare three fully Bayesian joint models of interrater and in-
trarater reliability of increasing complexity. The first model, which we refer to as the
Bayesian independent (BIN) model, expands on the model presented in [13] by con-
verting it to a Bayesian model and incorporating a random effect for time thus allowing
intrarater reliability to also be captured. The second model, which we refer to as the
Bayesian partially nested (BPN) model, expands on the model presented in [14] by
converting it to a Bayesian model and incorporating multiple time points. The third
model, which we refer to as the Bayesian fully nested (BFN) model, provides a Stan
implementation of the WinBUGS Bayesian model presented in [10] but with more
flexible priors.

In Section 2 we describe both probability-based (Section 2.1) and model-based
(Section 2.2) methods in estimating the probability of a positive classification and
the resulting interrater and intrarater reliability calculations. Formulas for calculating
model-based marginal correlations for each of the three models are provided (Section
2.3). In Section 3, we show the results of applying the proposed Bayesian models to
two real-world datasets and provide simulation results aimed at assessing the proper-
ties of the different measures of association depending on various model assumptions.
We conclude the paper with an overall summary of the findings along with limitations
of the proposed methods.

2. Methods

We consider a three-level nested data structure {Yijk} for subject i, evaluated by rater
j, taken at time k. This type of data structure is common in observational studies in
social and behavioral science, with subjects nested within clusters [18]. The quality
of rating procedures is often of interest with particular emphasis on interrater and
intrarater reliability. In the case of continuous outcomes, the intraclass correlation
coefficient (ICC) is typically used to quantify the degree to which different raters
resemble each other or the extent to which raters resemble themselves at two different
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time points. For the scope of this paper, we focus on the case of dichotomous outcomes
where J raters evaluate I subjects at K different time points.

2.1. Probability-based Methods

We first consider the simple case of I subjects evaluated by J raters, where interrater
reliability is of interest. Denoting the response (classification) of the jth rater on the ith

subject by Yij , a disagreement random variable Zi between raters j and j′ evaluating
subject i could be constructed. It is assumed that Zi is common for all pairs (j, j′).
Kappa coefficients for assessing interrater reliability between raters j and j′ are defined
by

κ = 1− E(Zi)

Ē(Zi)
(1)

where E(Zi) is the expectation of Zi and Ē(Zi) is the expectation of Zi assuming
statistical independence of raters j and j′, i.e. P (Yij = k1, Yij′ = k2) = P (Yij =
k1)P (Yij′ = k2) [19].

2.1.1. Cohen’s Kappa

Cohen’s Kappa coefficient in particular is obtained when Zi = 1 − I(Yij , Yij′) where
I(Yij , Yij′) = 1 if Yij = Yij′ and 0 otherwise. Assuming equal joint probabilities between
raters j and j′ across the subjects – i.e. P (Yij = k1) = P (Yij′ = k1) for k1 = 0, 1 – the
expectations for Cohen’s Kappa are given by

E(Zi) = P (Yij = 1, Yij′ = 0) + P (Yij = 0, Yij′ = 1) (2)

Ē(Zi) = P (Yij = 1)P (Yij′ = 0) + P (Yij = 0)P (Yij′ = 1) (3)

We can now define

po = 1− E(Zi) = Pr(Yij = 1, Yij′ = 1) + Pr(Yij = 0, Yij′ = 0) (4)

pc = 1− Ē(Zi) = Pr(Yij = 1)Pr(Yij′ = 1) + Pr(Yij = 0)Pr(Yij′ = 0) (5)

to be the observed and expected agreement due to chance respectively. Cohen’s Kappa
is more commonly known in following form

κc =
po − pc
1− pc

. (6)

Another formulation for pc, without assuming equal joint probabilities between raters
is given by

pc = Pr(Yij = 1, Yi′j′ = 1) + Pr(Yij = 0, Yi′j′ = 0) (7)

The true measure of chance agreement pc is the probability that two randomly selected
raters from a population make identical classifications on two different randomly cho-
sen subjects [13]. The definitions of po and pc are left relatively broad because the
formulas are adjusted depending on whether interrater reliability or intarrater reli-
ability is of interest and the nesting structure. For a three-level nested structure in
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particular,

po =

{
Pr(Yijk = Yij′k) for interrater reliability

Pr(Yijk = Yijk′) for intrarater reliability
(8)

pc =

{
Pr(Yijk = Yi′j′k) for interrater reliability

Pr(Yijk = Yi′jk′) for intrarater reliability
(9)

Like Cohen’s Kappa, Scott’s Pi is also applicable when evaluating categorical out-
comes and therefore also binary data. Scott’s Pi is calculated using the formula given
in (6) but with pc calculated slightly differently. Scott’s Pi assumes the distribution of
the raters is the same and therefore pc is calculated using squared “joint proportions”
which are squared arithmetic means of the marginal proportions (whereas Cohen’s uses
squared geometric means of them) [16]. Fleiss’ Kappa is a generalization of Cohen’s
Kappa to multiple raters (or time points) [6]. Congers Kappa which is a correction of
Fleiss’ Kappa and will be used throughout this paper when computing Kappa [4]. In
the following two subsections, we present closed-form formulas for computing Fleiss’
and Conger’s Kappa.

2.1.2. Fleiss’ Kappa (1971)

Let N represent the total number of subjects and M the number of raters per subject.
Define nij to be the number of raters assigning subject i to category j where j = 0, 1.
We also define pj to be the proportion of all ratings which were assigned to category
j and is given by

pj =
1

NM

N∑
i=1

nij .

We note here that
∑

j nij = M and
∑

j pj = 1

The agreement between the M raters for the ith subject, Pi is the proportion of
agreeing pairs out of all M(M − 1) possible pairs of assignment given by

Pi =
1

M(M − 1)
(ni1(ni1 − 1) + ni0(ni0 − 1))

or equivalently can be written as combinations out of all
(
M
2

)
= M(M−1)

2 possible pair
combinations as

Pi =
1(
M
2

)
[(

ni1

2

)
+

(
ni0

2

)]
.

The overall observed extent of agreement can be measured by the mean of Pis given
by:

Po =
1

N

N∑
i=1

Pi
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If the raters made their assignments by chance, the expected mean proportion of
agreement would be (pjpj′ = p2j ) given by

Pc = p20 + p21 =

[
1

NM

N∑
i=1

ni0

]2

+

[
1

NM

N∑
i=1

ni1

]2

.

The Kappa coefficient of agreement between the m raters can now be given by

κ =
Po − Pc

1− Pc
.

2.1.3. Conger’s Kappa (1980)

Using the same notation N, M, for j = 0, 1 Po and Pc are given by:

Po =
1

N

N∑
i=1

ni1(ni1 − 1) + ni0(ni0 − 1)

M(M − 1)

Pc = p̄2+0 − s20/M + p̄2+1 − s21/M

where s2k is given by s2k = 1
M−1(pj0 − p̄+0)

2 + 1
M−1(pj1 − p̄+1)

2 and represents the
variance of the proportion of pj0 and pj1. The Kappa coefficient of agreement between
the m raters can now be similarly given as

κ =
Po − Pc

1− Pc
.

2.2. Model-based Methods

The measures typically used in (2.1) posses some unfavorable traits. Namely, the mea-
sures do not incorporate uncertainty about the estimates in addition to the lack of
ability to adjust for covariates that could potentially impact the outcomes and most
importantly ignore the nested aspect of the data. In this section, we propose some and
generalize other Bayesian models for modelling pijk := Pr(Yijk = 1), the probability
the ith subject is classified as a ‘success’ (Y = 1) by the jth rater at the kth time point.

2.2.1. Independent model

[13] proposed a generalized linear mixed model (GLMM) for the case of a single time
point given in (10).

g(pij) = η + ui + vj , i = 1, ..., I, j = 1, ..., J (10)

g(.) is a link function (usually chosen to be the probit or logit link) and η is the
intercept term. The random effects terms are given by ui and vj for the ith subject
and jth rater which are assumed to be independent and normally distributed with
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mean 0 and variances σ2
u and σ2

v , respectively. Under the logit and probit models,
estimates of p0 and pc for a single time point (k = 1) are calculated as a function of
η, σ2

u, σ
2
v which are typically replaced by their estimates from the GLMM. This model

formulation is useful for evaluating interrater reliability in the presence of a single time
point.

We propose the Bayesian model presented in (11) that incorporates an additional
random effects terms wk for the kth time point in addition to a fixed effects term for
the ith subject evaluated by the jth rater at the kth time point.

g(pijk) = Xijkβ
I + ui + vj + wk, i = 1, ..., I, j = 1, ..., J, k = 1, ...,K (11)

Positive values of ui indicate that the ith subject was more likely to be classified as a
success amongst raters across time points, positive values of vj indicate that the jth

rater was more likely to classify subjects as success across time points, and positive
values of wk indicate that raters were more likely to classify subjects as success at the
kth time point. The underlying hierarchical Bayesian structure for model (11) is given
by

ui ∼ N(0, σ2
u)

vj ∼ N(0, σ2
v)

wk ∼ N(0, σ2
w)

σ2
u, σ

2
v , σ

2
w ∼ IG(α, γ)

βI ∼ MVN(µβ
p ,Σ

β
p )

(12)

Univariate Normal priors are assumed for the random effect terms with 0 mean and
independent variance terms that are assumed to have inverse-gamma hyperpriors with
parameters α and γ. The inverse-gamma parameters are typically chosen to be small
and equal to reflect non-informative priors. The fixed effects coefficient term βI is

assumed to have a p-variate Normal prior with known mean µβ
p and unstructured

covariance matrix Σβ
p .

2.2.2. Fully nested model

[10] proposed a Bayesian model able to assess interrater and intrarater reliability for
nested binary data structures. The model is given in (13).

logit(pijk) = Xijkβ
F + ui + vij + wijk, i = 1, ..., I, j = 1, ..., J, k = 1, ...,K (13)

A logit link function was chosen with a flexible fixed effects term Xijk of length p and
accompanying fixed effects coefficients vector βF. A first level of independent random
effects is imposed at the subject level through ui, followed by vij that represents a
joint subject/rater random effect and finally a subject/rater/time point joint random
effect wijk. Similar to the independent model, ui are assumed to follow an independent
univariate Normal distribution with mean 0 and variance σ2

u. The joint subject/rater

random effects vi. are assumed to be J−variate Normal with mean
[
0 0 ... 0

]T
and covariance matrix ΣF

v = DF
vΩ

F
vD

F
v where ΩF

v is the correlation matrix with unit

entries on the diagonal and ρFv entries on the off-diagonal, and DF
v =

√
diag(ΣF

v ) =

6



Bayesian Joint Modeling of Interrater and Intrarater Reliability with Multilevel Data  91Asian Journal of Statistics and Applications Hawila and Berg

[σv1, ..., σvJ ]
T so that

Var(vij) = σ2
vj

Cov(vij , vij′) = ρvσvjσvj′ for j = 1, 2, ..., J and j ̸= j′
(14)

We assume a JK−variate Normal distribution for wijk with similar structure to vij
with 0 mean and covariance matrix ΣF

w = DF
wΩ

F
wD

F
w where ΩF

w is the correlation
matrix with unit entries on the diagonal and ρFw entries on the off-diagonal, and DF

w =√
diag(ΣF

w) = [σw11, ..., σwJK ]T so that

Var(wijk) = σ2
wjk

Cov(wijk, wij′k′) = ρwσvjkσvj′k′ for j = 1, ..., J, k = 1, ...,K j ̸= j′, k ̸= k′
(15)

We note that the covariance matrices ΣF
v and ΣF

w are assumed to be unstructured for
generalizability, but other assumptions could be made. A common covariance structure
would assume σvj = σvj′ , ∀j ̸= j′ for ΣF

v and σvjk = σvj′k′ , ∀j ̸= j′ and k ̸= k′ for ΣF
w.

For ΣF
w, we can also assume separate covariance structures for different raters (or time

points), i.e. σvjk = σvj′k, ∀j ̸= j′ (or σvjk = σvjk′ , ∀k ̸= k′). The full hierarchical
Bayesian structure for model (13) is given by

ui ∼ N(0, σ2
u)

vi. ∼ MVN(0,Σv)

wi.. ∼ MVN(0,Σw)

σ2
u, σ

2
vj , σ

2
wjk ∼ IG(α, γ)

ΩF
v ,Ω

F
w ∼ LKJ(η)

βF ∼ MVN(µβ
p ,Σ

β
p )

(16)

Lewandowski-Kurowicka-Joe (LKJ) prior distributions are assumed for the correlation
matrix with tuning parameter η to control the strength of the correlations. The fixed
effects coefficient term βF is assumed to have a p-variate Normal prior with known

mean µβ
p and unstructured covariance matrix Σβ

p .
We call this model the fully-nested model due to the hierarchical nature of modelling

the random effects. Due to the complex structure of this model, different correlation
measurements are of interest, namely, marginal correlations and correlations among
random effects. Correlation among rater random effects ρR = Corr(vij , vij′) was used
to imply the strength of similarity among the underlying random effect mechanism for
raters j and j′ and the marginal correlation between these raters (interrater marginal
correlation) was calculated as CorrR = Corr(logit(pijk), logit(pij′k)). Similarly, for time
points k and k′ the correlation among time point random effects is given by ρT =
Corr(wijk, wijk′) and the marginal correlation between these time points (intrarater

marginal correlation) by CorrT = Corr(logit(pijk), logit(pijk′)). The correlation among
rater and time point random effects is used to infer similarity between raters and time
points, whereas the marginal correlation measures are used to differentiate between
raters or time points as they examine all dependencies involved.

7



92 Asian Journal of Statistics and Applications
Asian Journal of Statistics and Applications Hawila and Berg

2.2.3. Partially nested model

Twelve years after [13] proposed the independent GLMM, [14] proposed an ordinal
GLMM model with a crossed random effects structure given in (17). The ordinal
GLMM model uses a probit link function to reflect an underlying continuous outcome,
and creates a categorized version of the latent variable with C levels, evalued by J
raters atK = 2 time points. The primary usage of this model was to evaluate intrarater
reliability across two time points. The model is given by

g(pijk) = αc − (βPxk + ui + vjk), i = 1, ..., I, j = 1, ..., J, k = 1, 2 (17)

where αc represents the cutoffs defining the ordinal scaling with α0 = −∞, αC = +∞
and c = 1, ..., C − 1, xk is an indicator variable for the kth time point. A fixed effects
coefficient βP provides an overall adjustment for raters at different time points. The
subject level random effects ui are assumed to be independent and normally distributed
with mean 0 and variances σ2

u, whereas the rater/time point joint random effects vj.

are assumed to be bivariate Normal (BVN) with mean
[
0 0

]T
and covariance matrix

ΣP
v = DPΩPDP where ΩP is the correlation matrix with unit entries on the diagonal

and ρPv entries on the off-diagonal, and DP =
√

diag(ΣP
v ) = [σv1, σv2]

T so that

Var(vjk) = σ2
vk

Cov(vjk, vjk′) = ρvσvkσvk′ for k = 1, 2 and k ̸= k′
(18)

[14] also developed integrals for calculating the observed intrarater association and
chance intrarater association using the parameters (β, σ2

u,Σ
P
v ) of the model given in

(17). To prevent overestimating or underestimating the strength of association between
raters, and to account for chance association, [14] suggest minimizing the impact of
chance association on the Kappa estimate by selecting thresholds α1min, ..., αC−1min

such that the chance intrarater association integrand is minimized. A form of Cohen’s
Kappa (6), could also be calculated based on model (17) by computing the measure
for a single rater’s paired classification as

κavgc =
pavgo − pavgc

1− pavgc
, (19)

where pavgo and pavgc are the average observed and chance interrater (or intrarater)
association taken for all pairs of raters j and j′ (or time points k and k′).

To make this model compatible the case of a binary outcome (C = 2), and K time
points, an updated version of (17) is given by

g(pijk) = η − (βP
1 xk + ui + v′jk), i = 1, ..., I, j = 1, ..., J, k = 1, ...,K (20)

where βP
1 is a K × 1 coefficients vector where the kth entry represents the fixed

effect of the kth time point. v′jk is now K-variate Normally distributed with mean[
0 0 ... 0

]T
and covariance matrix ΣP’

v = DP’ΩP’DP’ with similar formulation to
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ΣP
v but K−dimensional so that

Var(vjk) = σ2
vk

Cov(vjk, vjk′) = ρvσvkσvk′ for k = 1, 2, ...,K and k ̸= k′
(21)

Incorporating multiple time points allow for a generalized assessment of intrarater
reliability. The underlying hierarchical Bayesian structure for model (20) is given by

ui ∼ N(0, σ2
u)

vj. ∼ MVN(0,ΣP’
v )

σ2
u, σ

2
vk ∼ IG(α, γ)

ΩP’ ∼ LKJ(η)

βP
1 ∼ MVN(µβ

K ,Σβ
K)

(22)

Univariate Normal priors are assumed for the subject random effect term with 0 mean
and independent variance terms that are assumed to have inverse-gamma hyperpriors
with parameters α and γ. The inverse-gamma parameters are typically chosen to
be small and equal to reflect non-informative priors. Multivariate Normal priors are
assumed for the rater/time point joint random effect with 0 mean and covariance
matrix as given in (21). The fixed effects coefficient term βP

1 is assumed to have a

p-variate Normal prior with known mean µβ
K and unstructured covariance matrix Σβ

K .

2.3. Marginal Correlations and Correlations between random effects

After fitting one of the proposed Bayesian models from the previous section, two differ-
ent measures other than Kappa could be of interest. Namely, the marginal correlation
between two raters (or two time points) which is defined as the correlation between
the observations made by raters j and j′ (or time points k and k′).

CorrR = Corr(g(pijk), g(pij′k)) (23)

CorrT = Corr(g(pijk), g(pijk′)) (24)

Another measure of interest is the correlation between random rater effects ρR or
between random time point effects ρT . These measures differ based on the type of
model selected (independent, partially nested, or fully nested).

2.3.1. Independent Model

For the independent model, the subject, rater and time point random effects are a
priori univariate independent Normally distributed. The marginal correlations based
on this model are given by:

CorrRIN =
σ2
u + σ2

w

σ2
u + σ2

v + σ2
w

(25)

CorrTIN =
σ2
u + σ2

v

σ2
u + σ2

v + σ2
w

(26)

9
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The correlation between rater random effects and time point random effects are ρR =
ρT = 0 due to independence of the random effects.

2.3.2. Fully Nested Model

Assuming a fully nested Bayesian model as given in 13, the marginal correlations
between two raters and two time points are given by

CorrRFN =
σ2
u + ρR × σ2

v

σ2
u + σ2

v + σ2
w

(27)

CorrTFN =
σ2
u + ρT × σ2

w

σ2
u + σ2

v + σ2
w

(28)

where ρR is the correlation between rater random effects and ρT is the correlation
between time point random effects.

2.3.3. Partially Nested Model

Assuming a Bayesian partially nested model as given in 20, the marginal correlations
between two raters and two time points are given by

CorrRPN =
σ2
u

σ2
u + σ2

vk

(29)

CorrTPN =
σ2
u + ρTσvkσvk′

σ2
u + σ2

vk

(30)

The correlation between rater random effects is ρR = 0 and ρT is the correlation
between time point random effects.

3. Simulation and Examples

3.1. Software and Implementation

All the developed functions that will allow users to implement the three Bayesian
models proposed in Sections 2.2.1, 2.2.2 and 2.2.3 using RStan [17] in addition to easily
computing interrater and intrarater reliability posterior estimates, credible intervals
and simulation results are available through https://github.com/NourHawila/IRR.

3.2. Data Examples

All three Bayesian models – BIN, BPN and BFN – are fit to two real-world datasets.
The resulting model fits are subsequently used to explore model properties through
simulations.

3.2.1. Dataset: Running gait

In a crossover study published in 2022, [11] recruited 32 cross-country, track and
field, and recreational athletes with current running mileage of at least 15 km per
week to compare indoor and outdoor running environments. Athletes first ran on a
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treadmill in an indoor environment recorded using static video, followed by outdoor
video recorded by a drone. Three judges were shown both videos, two weeks apart, and
independently performed running gait analysis on each foot for each of the 32 runners,
with the goal of assessing interrater and intrarater reliability in addition to indoor vs.
outdoor agreement. This dataset consists of a total of 768 data points (32 runners, 3
raters, 2 time points, 2 feet, 2 locations) in a complete block design. Fleiss’ Kappa was
used to assess reliability in [11] after averaging across the nested structures.

3.2.2. Dataset: Radiograph

The quality of root canal is typically evaluated by a radiographic assessment that is
known to be necessary yet subjective. A study was conducted to assess the consistency
and accuracy of the radiographic evaluation of 7 endodontists who partook in a training
course and evaluated radiographs from 35 participants before and after the training
[2]. The quality of endodontic treatment is defined as “good” if the filling reaches an
adequate length within 2 mm of the radiographic apex and if the complete obturation
is in the apical one-third of the root canal [10]. This dataset consists of a total of 490
data points (35 subjects, 7 raters, 2 time points) in a complete block design. [10] used
the BFN model to assess interrater and intrarater reliability using WinBUGS.

3.2.3. Model fits of two real-world datasets

The three Bayesian models were fit to each of the two datasets. Each of the mod-
els used 2000 iterations, 200 warmup iterations per chain across 2 chains. The
functions model BIN, model BPN, and model BFN, available at https://github.com/
NourHawila/IRR, are used to fit the datasets to the respective Bayesian models. The
syntax for fitting the three models is presented below. The fixed eff intercept ar-
gument controls whether the fixed effects design matrix includes an intercept term or
not. The parameters beta a and beta b are the hyperpriors for the correlation terms
rho R and rho T which are assumed to follow Beta distributions. The parameters
gamma a and gamma b are the hyperpriors for the variance terms sigma S, sigma R,
and sigma T which are assumed to follow inverse gamma distributions. The parame-
ters rho R eta and rho T eta are the hyperior shape parameters for the correlation
terms rho R and rho T respectively which are assumed to follow an LKJ correlation
distribution.

BIN model BIN(df, fixed eff intercept = TRUE, beta a = 5, beta b =

5, gamma a = 3, gamma b = 1.5, beta mean =0, beta sigma = 1/0.3,

niters = 2000, nwarmup = 200, nchains = 2)

BPN model BPN(df, cov T str = "common", fixed eff intercept = TRUE,

beta a = 5, beta b = 5, gamma a = 3, gamma b = 1.5, beta mean = 0,

beta sigma = 1/0.3, betak mean = 0, betak sigma = 1/0.3, rho T eta

= 1, niters = 2000, nwarmup = 200, nchains = 2) )

BFN model BFN(df, cov R str = "common",cov T str = "common",

fixed eff intercept = TRUE, beta a = 5, beta b = 5, gamma a = 3,

gamma b = 1.5, beta mean = 0, beta sigma = 1/0.3, rho R eta = 1,

rho T eta = 1, niters = 2000, nwarmup = 200, nchains = 2) )

Table 1 presents fits of the three Bayesian models to the two datasets. Based on
the leave-one-out information criterion (LOOIC), the best model for the running gait
dataset is the BPN model with the BIN model in a close second place. The LOOIC
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selected the BFN as the best model for the radiograph data, while the other two
models displayed substantially larger LOOICs.

Estimates of the interrater and intrarater Kappa measures based on direct frequen-
tist estimation and model-based methods are presented in Table 2. Using the generated
quantities block in Rstan, we simulate data from the posterior predictive distribu-
tion and calculate the interrater and intrarater kappa estimates. For the running gait
dataset, the LOOIC-selected BPN model produced interrater and intrarater kappa
estimates (0.24 and 0.30, respectively) that substantially differ from the frequentist-
based estimates (0.44 and 0.45, respectively). Similarly, for the radiograph dataset,
the LOOIC-selected BFN model produced interrater and intrarater kappa estimates
(0.07 and 0.33, respectively) that are even more different from the frequentist-based
estimates (0.40 and 0.72, respectively). These results show that datasets with small
number of raters and timepoints can lead to widely varying estimates of interrater
and intrarater reliability depending on what approach is used. In the next section, we
simulate datasets from different models to evaluate these differences in interrater and
intrarater reliability estimation.

Table 1.: Posterior mean estimates, effective number of parameters (p LOO), and the
LOOIC for fitting the three Bayesian models to the two datasets described in Section
3.2

Model Parms Running Gait Radiograph

BIN

σS 0.91 1.31
σR 0.79 0.77
σT 0.79 0.78

CorrR 0.70 0.79
CorrT 0.70 0.78
p LOO 32.02 32.29
LOOIC 720.89 396.54

BPN

σS 0.89 1.31
σT 0.75 0.70

CorrT 0.80 0.88
ρT 0.50 0.51

p LOO 33.17 35.9
LOOIC 720.44 398.81

BFN

σS 0.70 0.63
σR 0.65 0.88
σT 0.64 1.47

CorrR 0.55 0.24
CorrT 0.84 0.72
ρR 0.54 0.42
ρT 0.47 0.51

p LOO 72.38 82.83
LOOIC 741.02 318.02
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Table 2.: Interrater and intrarater Conger Kappa estimates for the two datasets

Running
Gait

Radiograph

Freq
κinter 0.44 0.40
κintra 0.45 0.72

BIN
κinter 0.26 0.39
κintra 0.27 0.40

BPN
κinter 0.24 0.37
κintra 0.30 0.42

BFN
κinter 0.18 0.07
κintra 0.26 0.33

3.3. Simulations

Datasets are simulated from the three different models – independent (IN), partially-
nested (PN), and fully-nested (FN) – as presented in Section 2.2. The parameter values
used in these model-based simulations are the posterior estimates from the respective
model fits presented in Table 1. In this way, the simulated datasets are based on the
two real world datasets, and these respective simulations are labeled as ‘running gait’
and ‘radiograph’. For each dataset-based simulation (running gait and radiograph),
and for each model (IN, PN, FN), a total of 148 datasets were generated. For each of
the generated datasets, the three Bayesian models (BIN, BPN, BFN) were fit to the
data and their respective LOOIC was recorded. The model with the smallest LOOIC
is referred to as the ‘LOOIC-selected’ Bayesian model for that simulation. Over each
set of 148 simulations, the relative proportions of the LOOIC-selected models are
presented in Table 3.

When the true simulation is IN, the BIN model is the most common LOOIC-selected
model for both dataset references. Similarly, when the true simulation is PN, the
BPN model is the most common LOOIC-selected model for both dataset references.
However, when the the true simulation is FN, the BFN model is the most common
LOOIC-selected model for the running gait dataset reference but the BPN model is
the most common LOOIC-selected model for the radiograph dataset reference.

Table 3.: Relative proportions of LOOIC-selected models for 148 simulations with
each row adding up to 100% and the most commonly selected model for each set of
simulations is bolded

Dataset
Reference

Sim
Model

BIN BPN BFN

IN 77.7% 18.2% 4.1%
PN 14.2% 85.1% 0.7%

Running
Gait

FN 7.4% 37.8% 54.7%
IN 73.6% 21.6% 4.7%
PN 12.2% 82.4% 5.4%

Radio-
graph

FN 1.4% 98.6% 0%

For each dataset-based simulation (running gait and radiograph), and for each model
(IN, PN, FN), approximate theoretical interrater and intrarater reliability measures
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are generated by simulating 10,000 datasets and taking the average kappa estimates.
The resulting ‘true’ kappa parameters are displayed in Table 4. The frequentist-based
and model-based (BIN, BPN, BFN, LOOIC-selected) interrater and intrarater kappa
estimates are calculated for each of the 148 simulated datasets and the average pa-
rameter estimates and root mean square error (RMSE) performances are presented.
The overall performance of each method (frequentist, BIN, BPN, BFN, and LOOIC-
selected) over all 148 × 3 = 444 simulated datasets within each dataset reference is
highlighted in blue. The Bayesian model consistent with the respective data simulation
is highlighted in yellow. The method with the smallest RMSE is bolded in each row
of the table.

The simulations show all three Bayesian models perform similarly in terms of inter-
rater and intrarater estimation. However, the frequentist-based estimation of interrater
and intrarater reliability is shown to be worse than each of the Bayesian models for
every simulation scenario. All three Bayesian models tend to perform similarly with
regard to interrater and intrarater reliability estimation; the Bayesian model consis-
tent with the data simulation model was not always optimal though it is consistently
close to the optimal model.

Table 4.: Kappa simulation results showing mean estimates (RMSE)

Model
Parms

Sim κ True Freq BIN BPN BFN LOO

inter 0.261 0.265 (0.111) 0.266 (0.106) 0.266 (0.106) 0.254 (0.102) 0.265 (0.105)
IN

intra 0.271 0.265 (0.115) 0.268 (0.108) 0.263 (0.107) 0.271 (0.103) 0.267 (0.108)
inter 0.236 0.231 (0.06) 0.242 (0.056) 0.233 (0.056) 0.226 (0.055) 0.233 (0.057)

PN
intra 0.297 0.297 (0.086) 0.321 (0.068) 0.299 (0.071) 0.325 (0.065) 0.3 (0.071)
inter 0.178 0.174 (0.066) 0.201 (0.063) 0.194 (0.061) 0.177 (0.056) 0.182 (0.058)

FN
intra 0.259 0.261 (0.082) 0.262 (0.065) 0.246 (0.07) 0.286 (0.067) 0.272 (0.068)
inter 0.082 0.078 0.078 0.074 0.077

Running
Gait

Avg
RMSE intra

–
0.096 0.083 0.085 0.08 0.084

inter 0.385 0.387 (0.088) 0.381 (0.083) 0.381 (0.084) 0.371 (0.085) 0.38 (0.084)
IN

intra 0.399 0.39 (0.113) 0.386 (0.105) 0.372 (0.106) 0.395 (0.107) 0.385 (0.107)
inter 0.373 0.378 (0.072) 0.373 (0.067) 0.372 (0.067) 0.365 (0.069) 0.371 (0.067)

PN
intra 0.423 0.426 (0.075) 0.439 (0.061) 0.415 (0.062) 0.455 (0.064) 0.421 (0.064)
inter 0.074 0.074 (0.052) 0.092 (0.049) 0.076 (0.049) 0.085 (0.049) 0.076 (0.049)

FN
intra 0.331 0.327 (0.174) 0.413 (0.147) 0.308 (0.164) 0.341 (0.123) 0.309 (0.164)
inter 0.072 0.068 0.068 0.069 0.068

Radio-
graph

Avg
RMSE intra

–
0.127 0.11 0.118 0.101 0.119

4. Discussion

In this paper we have presented three Bayesian GLMMs and assessed the properties of
different model assumptions on the estimation of interrater and intrarater reliability.
The proposed models are comprehensive in terms of jointly adjusting for subject,
rater and time point effects. The models are also flexible and able to incorporate
different prior beliefs and knowledge about specific model parameters through Bayesian
modelling. Contrary to commonly used models, the ones presented are not restricted
to two raters or time points but are applicable for the general case of I subjects, J
raters and K time points.

Some drawbacks in utilizing these methods for assessing interrater and intrarater
reliability include the complexity in analyzing all the different parameters of interest
and ensuring proper convergence of the model. Selecting the most appropriate model
among the three Bayesian models requires a good understanding of the data, though
the simulations show that utilizing the LOOIC model selection method will often select
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the optimal or near-optimal model. As in any Bayesian model fit, the choice of priors
may have substantial impact on the posterior estimates, so a sensitivity analysis that
varies the priors should be performed.
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